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Abstract—A new concept of nonparametric signal detection
and classification technique is proposed using mutual infor-
mation measures in the time—frequency domain. The time—
frequency-based self-information and mutual information are
defined in terms of the cross time—frequency distribution. Based
on time-frequency mutual information theory, this paper presents
applications of the proposed technique to real-world vibration
data obtained from a dedicated condition-based-maintenance
experimental test bed. Baseline, unbalanced, and misaligned
experimental settings of helicopter drivetrain bearings and shafts
are quantitatively distinguished by the proposed techniques. With
imbalance quantifiable by variance in the in-phase mutual infor-
mation and misalignment quantifiable by variance in the quadra-
ture mutual information developed and presented herein, machine
health classification can be accomplished by use of statistical
bounding regions.

Index Terms—Aerospace components, electromechanical sys-
tems, information entropy, military aircraft, mutual information,
prognostics and health management, vibration measurement.

I. INTRODUCTION

HE STANDARD maintenance practices in military avi-
ation involve replacing existing parts after a certain time
period or a certain number of operational hours. This practice is
called time-based maintenance (TBM) and can lead to failures
in critical parts due to unexpected wear, causing operational
downtime and potential safety hazards [1]. Therefore, instead
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of TBM, it is desirable to consider use-based maintenance
practices so that critical parts are replaced or repaired before
their full lifetimes for economic and safe operations [2]. A new
practice of condition-based maintenance (CBM) is proposed for
military aviation fleet management which involves changing the
time- and reaction-based maintenance schedules into ones that
are predictive and proactive [3], [4]. However, to achieve this
innovative maintenance practice, data must be collected from
vital operational components and analyzed in order to deter-
mine the current (diagnostic) and future (prognostic) health of
critical components.

In order to monitor the health status of the systems, a variety
of signals are collected, including vibration [5], [6], acoustic
[7], and temperature. Over the past decade, great advancements
have been made in health diagnostics and vibration manage-
ment in military helicopters. The successes to date have resulted
in the large-scale deployment of increasingly useful health-
monitoring systems such as health- and usage-monitoring
systems (HUMS) using Vibration Management Enhancement
Program (VMEP) hardware, which have generated a wide range
of benefits from increased safety to reduced maintenance costs.

Most CBM tools such as HUMS for Apache and Blackhawk
helicopters assist machinery maintainers in identifying faulted
components through the use of simple interfaces and indicators.
The most commonly utilized functions are condition indicators
(CIs), which output a dimensioned or dimensionless single
scalar value to monitor key factors most frequently related to
frequency analysis of vibration signature. CIs need not be based
upon vibration analysis alone and may include component tem-
peratures or acoustic data for separate or fused CIs. Examples
of common indicators in machine diagnostics and prognostics
include the following: spectral peak analysis, envelope analysis,
energy ratio, crest factor, sideband index, and kurtosis of resid-
ual signals [8]. These CI values are typically compared with
preestablished thresholds in a simple decision tree classifier
which assign the CI with some form of ranked class such as
“good,” “caution,” or “exceeded,” and these classes are then
utilized by maintainers in vital decision-making processes. A
given component can have several CIs which may additively
form a health indicator (HI). Typically, CIs or HIs are not fault
specific; multiple fault types can affect the value of a single CI,
and a single fault could affect multiple CIs.

While various CIs and HIs do exist, we aim to improve
their effectiveness by developing new general methods for fault
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analysis based around time-frequency analysis that could be
used in existing or new CIs for indication of machinery failure.
Previous studies on CBM from diverse applications [9], [10]
have shown that abnormality of the system is characterized
by transient precursors in the signals. Through their use in
detecting transient precursors, advanced signal processing tech-
niques have contributed to develop diagnostics and prognostics
algorithms for aging aircraft [11]. The classical methods for
vibration analysis such as spectral analysis or time-frequency
distributions represent frequency- or time- and frequency-
localized energy; however, it is not an easy task to analyze
multiple signals that have been simultaneously collected from
systems under test. In particular, time-frequency analysis is
useful to analyze the transient signature of the abnormality
and its precursors [12]. Previous convention dictated that time-
frequency-based applications were difficult to implement in real
time; however, methods [13] have been proposed to accomplish
time-frequency algorithms that are feasible for the constant
monitoring required for CBM [14]. We present a path toward
using time-frequency analysis and specify metrics based on
time-frequency representations for condition and health mon-
itoring, advancing the analysis of data from existing condition-
monitoring systems without the use of additional hardware.

In this paper, we propose a new concept of nonparametric de-
tection and classification of signals. We define time-frequency-
based self-information and mutual information in order to
classify the health status of the system components in
Section II. Other methods [6], [15], [16] have been proposed to
use either classical methods or neoclassical methods, moving
toward the use of both time- and frequency-based informa-
tion. The proposed method takes advantage of both time- and
frequency-domain transients to establish a complexity measure-
ment for potential assessment of component health. The exper-
imental setup and data description are provided in Section III.
The results and discussions are provided in Section IV, and
conclusions of this paper are drawn in Section V. Based on
the time-frequency-based mutual information theory, this paper
presents applications of the proposed technique to real-world
vibration data.

II. TIME-FREQUENCY INFORMATION MEASURE

The classical information measure of a continuous stochastic
process is known as Shannon information [18] given as

H, =~ [ $(o)1og, f(2) do ()

where the continuous function f(z) is a probability density
function which is positive and bounded between zero and one.
Williams et al. [18] proposed a measure of time-frequency
information by use of the generalized Rényi information. The
definition of the generalized Rényi information [19] of a con-
tinuous bivariate distribution P(z,y) is defined as follows:

1 P« dx d
Ha(P) = ——log, LI ) drdy,

1—-a [ [P(z,y)dzdy
The definition of the generalized Rényi information can be
extended by replacing the bivariate distribution P(z,y) with a

2)
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Cohen class [20] time-frequency distribution Cs(t,w) of signal
s(t) with the following definition:

1
et =gt [[[+ (5-3)1(+3)
x ¢(0,7)e IR G0 dr du. (3)

The use of the Cohen class distribution permits a more
general solution, allowing for variable kernel selection. The
kernel function of the distribution is described by the ¢(6, 7)
term in (3). In other words, the theory described in this section
presents analysis for the general case of the Cohen class time-
frequency distribution, while any distribution kernel could be
selected when applying the time-frequency mutual information
measure, including, but not limited to, the general (Cohen
class), spectrogram, Zhao—Atlas-Marks, Wigner-Ville, Choi-
Williams, or reduced interference distribution kernel [20]. In
this paper, we selected the spectrogram kernel for the time-
frequency information because it has the desirable property
of nonnegativity forwarded by Williams et al. in [18] for
all time and frequency variables. To provide consistency of
discussion with time-frequency analysis in Section III-C, the
spectrogram here is defined as a Cohen class distribution as
seen in (3), where the kernel function ¢ (6, 7) is specified as
the spectrogram kernel given by

6(0,7) = /h* (u - ;7‘) h (u + ;7‘) e du. (@)

In addition, the spectrogram is a distribution that warrants pos-
itivity for all time and frequency variables, which is a desirable
quality for the bivariate distribution described by P(x,y) in (2)
and another reason why we selected the spectrogram for use in
this paper.

The order of the generalized Rényi information determined
by parameter « for the time-frequency distribution has been
investigated in [21] so that v = 3 is a reasonable selection, with
the exception of contrived counterexamples [18]. Hence, the
following information measure of the time-frequency distrib-
ution will be utilized in this paper:

1 [ [Ct,w)dtdw
Ha(Cs) = 1—a log, [ [Cs(t,w)dtdw”

®)

The metric H,(Cs) defined in (5) measures the number of
signal elements of s(t) over the time and frequency planes.
The Rényi information measure is a meaningful measure of
the time-frequency distribution, but it is only defined for a
single realization of a signal, e.g., self-information. If we have
a pair of signals closely related, how can we define or quantify
the interactions in terms of information? We will investigate a
generalization of the time-frequency information measure by
introducing the mutual time-frequency information.

In order to analyze the information of two closely spaced
components, the classical mutual information of two random
processes is extended to two time-frequency distribution func-
tions. Let us consider the classical definition of the mutual
information that might be extended to the measure of mutual in-
formation of the time-frequency distributions. The joint entropy
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H(X,Y) of a pair of continuous random variables (X, Y") with
a joint probability density function p(x,y) is defined as

—//p(%y) logy p(x,y) dz dy. (6)
By chain rule

H(X,Y)=H(X)+ H(Y|X) (7)
where H(Y'|X) is the conditional entropy. Under the same
conditions, the mutual information I(X;Y") is the relative
entropy between the joint distribution p(z,y) and the product
distribution of the individual marginal distributions p(x) and
p(y) as follows:

VY - N log., _P&Y)
I(X,Y)—//p( ,y) logy —————— @) P ®)
(

The relation of the mutual information 7(X;Y") and the joint
entropy H(X,Y) is defined as follows:

I(X:Y)=H(X) - HX|Y)
=H(Y)-H(Y|X)
=H(X)+H(Y)-H(X,Y). 9)

Thus, it is necessary for us to define the cross time-frequency
distribution Jy, , (¢, w; ¢) of the signal pairs S; and S5 [22]

ot~ [ ] f(o- (e

x (0, T)efjet”m“a“ df dr du.

The kernel ¢(0,7) is equivalent to the kernel given in
Cohen’s class in (3), and the cross time-frequency distribution
satisfies the time and frequency marginal property under the
same constraints given in Cohen’s class. Consider a joint infor-
mation of the time-frequency distribution H,, (Js, s, ) in terms of
the cross time-frequency distribution Js, s, (¢, w; ¢) as follows:

Oé(J5152)
J [T, (tw)dt dw
- 1°g2 [ [ Tes(tw)dtde’

(10)

H(Sl752) =

(1)

However, one must be careful in defining the information
measure of the cross time-frequency distribution which is a
complex number. In addition, normalization of the distribution
is important for a proper bound of the information measure.
Therefore, instead of direct application of the generalized Rényi
information, consider the normalized cross time-frequency
distribution J, s, (t,w) as follows:

Js1s, (t, w)
\/Csl (tv w) : CSz (tv w)

Ry, (t,w)
\/051 (t7 w) : 052 (t7 w)
Qs,55 (W)

\/051 (t7 w) : CSz (tv w)

= EslSz (ta (.U) + j@slsg (ta w)’

jswz (t,w) =

_|_

J

(12)
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We can define the time-frequency mutual information mea-
sure of in-phase I*(S;;S) = —H,(Rs,s,) and quadrature

I19(S1;89) = fHa@w) as follows:
IR(8;8,) = logz//Rs152 t,w)dt dw
_ % {Ha (Co) + Ha (C)} (13)
I9(S1;8,) = 1og2//QW (t,w) dt dw
- % A{Ha (Cs,) + Ho (Cs,) } (14)

Then, the mutual information measure 1, (S1;S2) of S; and
Sy is defined in terms of the in-phase time-frequency mu-
tual information 7 (S;; S5) and the quadrature time-frequency
mutual information I (S1; Ss) as follows:

10515 89) =IH(S15S) + I (515 Sa)

= —H, (Rays,) — Ha (Qu,s,)

=H. (Cs,) — Ha (C5,|Cs,)

=Ho (Cs;) — (Ha (Cs,, Cs,) — Ha (Cs, )

Ho(Csy|Csy)

= Ho (Cy) = Ha (Cy|Csy) - (15)
Therefore, the mutual time-frequency  information
I,(Cs,;Cs,) is the sum of individual time-frequency

information H,(Cs,) and H,(Cs,) and joint information
H,(Cs,,Cs,). For example, if s1(t) = s2(t), then Cs, = Cs,
and @, s, = 0 such that

I, (Cs,;Cs,) = 1, (Csy; Csy) =

525

CY (Csl) or H(Y (Csz) .
(16)

Based on the mutual time-frequency information measure, we
investigate the efficacy of the proposed technique with real-
world data sets. The experimental setup and data descriptions
are provided in the next section.

III. EXPERIMENTAL SETUP AND DATA DESCRIPTION

The Condition-Based Maintenance Research Center at the
University of South Carolina has an AH-64 helicopter tail rotor
drivetrain test stand for on-site data collection and analysis [1].
The test stand includes an ac input motor [Fig. 1(a)] rated at
400 hp to provide input drive to the configuration, a multishaft
drivetrain supported by hanger bearings, flex couplings at shaft
joining points, two gearboxes, and an absorption motor of
matching rating to simulate the torque loads that would be
applied by the tail rotor blades. The test stand, with picture
provided in Fig. 1(b), was used to collect data to be used in
conjunction with historic helicopter vibration data to develop
the baseline of operation for the systems under test. The signals
are collected during the operational run of the apparatus, includ-
ing vibration data measured by accelerometers, temperature
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TABLE 1
LOADING PROFILE FOR A 30-min BASELINE TEST RUN

Rotational Output Torque | Input Torque | Duration
Speed (RPM) (ft-1b) (ft-1b) (min)
0-600 0 0 7.5

4863 111 32.35 30
600-0 0 0 7.5

measured via thermocouples, and speed and torque measured.
The measurement devices were placed at the forward and aft
hanger bearings and both gearboxes. This paper focuses on the
application of time-frequency techniques to the forward and
aft hanger bearing vibration signals denoted as S; and S5 in
Fig. 1(a) and (b). The physical separation between accelerome-
ters (which will further be referred to more generally as sensors)
on the bearings is 3.43 m.

A. Data Acquisition

The data acquisition software collects data from the hanger
bearings once every 2 min during the course of the 30-min
baseline runs, with the exception of two additional collection
periods at the start of the run, a total of 17 measurements. An
experimental run consists of an intermediate speed ramp from
0 to 600 r/min followed by a ramp from 600 to 4863 r/min. The
measurements for baseline characterization were then taken
during operation of the test stand at a constant rotational speed
of 4863 r/min from the prime mover, with a simulation of the
output torque at 111 ft - Ib from the secondary. A summary of
the test conditions is given in Table I given a few conventions.
Rotational speed is the speed of the input shafts and hanger
bearings. Output torque is given by the torque at the output
of the tail rotor gearbox simulating rotor operation while the
torque applied to the input shafts and hanger bearings is equal
to 32.35 ft - 1b.

Data collection yielded 65536 points at a sampling rate of
48 kS/s per scheduled sampling period, which results in a data
collection time of roughly 1.31 s per acquisition. For each run,
data were acquired 17 times on these 1.31-s intervals: twice at
the beginning and then once every 2 min until the end of the
run. With individual data files containing 65 536 samples each,
the acquisition results in over one million data points per set,
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Schematic representation of (a) the AH-64 helicopter tail rotor drivetrain test stand and (b) the actual test stand with labeled components for comparison.

which is too intensive for many processors to handle during
time-frequency analysis. In order to resolve this computational
issue and decrease the computation time, each data set under
test was divided into 17 experimental frames to correspond to
each time the sensor was activated to collect data. Each of the
17 experiments was then divided into 16 windows that
comprised 4096 points each. Within these subdivided win-
dows, spectrogram measurements were made on both S; and
S, while the mutual information measure was applied to
4096 point segments of S and Ss.

Additional windows can be determined by an overlap per-
centage which layers additional 4096 point windows within the
main 16 windows in a given experimental frame at intervals of
4096 multiplied by the overlap percentage in order to create
additional effective mutual information measurements from the
given data. An overlap of 33% was determined to provide
adequate clustering and enhance the probability density for
implementation of predictive confidence levels.

This overlap selection helps eliminate data outliers and im-
prove the visualization of the clustering when applying the
time-frequency mutual information described in Section II to
multiple data points. Therefore, the total number of mutual
information measure points for the given data is equal to the
number of experimental frames (17) multiplied by the number
of window signal subsets (16) and the inverse of the fractional
overlap percentage (3), for a total of 816 mutual points or
272 mutual points when neglecting overlap components. The
data format of the time series is also provided in [14].

The configuration of the test stand uses balanced drive-
shafts aligned in a straight assembly as a baseline for normal
operations. After performing test runs in the baseline condi-
tion, intentionally faulted configurations are tested to expand
the baselines to include combinations of misaligned and un-
balanced shafts. The goal of the time-frequency analysis is
to establish metrics for the baseline conditions using the
original data set and produce a set of metrics to diagnose
each of the unbalanced and misaligned conditions. The data
presented for analysis included five sets of 30-min runs of
the apparatus each taken with different alignment and balanc-
ing conditions. Table II displays these conditions and their
designations.
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TABLE II
TAIL ROTOR DRIVESHAFT EXPERIMENTAL SETTINGS
| Shaft Status [[ Balanced |  Unbalanced |
Aligned A/B UB/A
Misaligned MA/B MA/UB 3-5, 4-5

B. Misalignment and Imbalance Experimental Conditions

The primary physical fault conditions characterized exper-
imentally are bearing imbalance and shaft misalignment. An
overview of these settings helps in gaining familiarity with the
experimental setup. The nomenclature of the baseline sets is
dictated by numbered segments of the drivetrain. Each segment
of concern in the experimentation is designated by a number
(1 to 5) and coupled by flex couplings at the bearing locations
to hanger bearings. Imbalance is related to driveshafts which
exhibit geometrical or mass centerlines that do not coincide
with axes of shaft rotation (unbalanced—aligned (UB/A) and
unbalanced-misaligned (UB/MA) cases). These will be referred
to as the UB/A and UB/MA cases, respectively. Misalign-
ment (misaligned-balanced (MA/B), UB/A, and misaligned-
unbalanced (MA/UB) cases) in the test configuration is
characterized by a change in bearing and shaft placement that
moves the number 3, 4, and 5 shafts from a straight alignment to
produce an angle of 1.3°. Either a 3—-5 imbalance (imbalance of
three consecutive driveshafts) or a 4-5 imbalance (imbalance of
only two driveshafts) differentiates two experimental settings.
The aforementioned settings will be referred to as the MA/B
and UB/MA 3-5 and 4-5 cases. These settings produce addi-
tional wear on drivetrain components while also presenting ad-
ditional transients in harmonics that can be measured for health
classification purposes. For the purposes of this paper, we
will simply refer to these cases as baseline [aligned—balanced
(A/B)], misaligned (MA/B), unbalanced (UB/A), and MA/UB
as shown in the nomenclature in Table II. Instances of ambi-
guity between the MA/UB cases will be specified as 3—5 mis-
aligned or 4-5 misaligned.

Imbalance vibrations are generated when a geometrical cen-
terline or a mass centerline of a shaft does not coincide
with the rotational axis of the shaft, for example, in cases of
bearing looseness or due to manufacturing imperfections. This
inconsistency between rotational axis and geometrical or mass
centerline creates a radial bow force F), at a fixed relative phase
angle ¢ which varies in magnitude along the length of the
shaft as shown in Fig. 2(b). The imbalance condition creates
harmonically varying vibrations D on a hanger bearing hous-
ing, which are registered by dedicated accelerometers. These
varying vibrations consist of x- and y-axis radial vibrations,
z-axis axial vibrations, and torsional vibrations of a shaft in
a bearing [Fig. 2(b)], as well as additional vibration signal
contributions coming from coupled bearings, gearboxes, power
units, airframes, and other components. Each hanger bearing
on a helicopter system has only one dedicated accelerometer
in current settings, which can pick only the lateral z-axis
component of the vibrations [Fig. 2(c)] of the form

D, = A, - cos(wt + 1)
D, =A, -sin(wt + 1y)

a7)
(18)
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where D, , and A, , are the displacements and the amplitudes
of the displacements in the x- and y-axis directions, w is the
angular velocity, and 1), ,, are the phase angles.

Vibrations caused by imbalance will be in phase on both
bearing accelerometers S; and S when (¢, — ¢, = 0) and
will vary only in magnitude depending on the magnitude of
imbalance F),. The driveshaft supported by the hanger bearings
at sensor locations S7; and Sy is not a uniform shaft but
rather a sectionalized shaft as previously described. Therefore,
misalignment cannot typically be avoided. It should be noted
that, as shown in Table I, the experimental data are gathered
under conditions of constant or near-constant torque load and
speed.

Misalignment in our case is considered as an angular mis-
alignment when the shaft centerlines of the two shafts meet at
an angle with each other. This, on the contrary to imbalance,
causes axial preloads on the shaft in the z-axis direction and
can be decomposed to an x signal component based on the
angle of misalignment F,, = F’, sin(«,y, ). This force will have
the greatest impact on the bearing closest to the shafts’ coupling
point and will have a phase difference in reference to force
registered at a further located sensor (¢, — ¢, # 0) [Fig. 2(c)]
because of finite stiffness and dampening in the system.

In industrial vibration monitoring, one would use shaft di-
agnosis techniques such as shaft centerline orbit monitoring,
which requires two x and y sensors at a single location and a
skilled human operator, which make such technique inapplica-
ble in our case and justify the need for an advanced diagnostic
measure. The mutual information measure takes advantage of
two accelerometer signals located at different locations, simul-
taneously quantifying frequency and phase components of the
mechanical vibration signals.

C. Analysis via Spectrogram and via Rényi Information

A Cohen class time-frequency distribution utilizing the spec-
trogram kernel as detailed in Section II was used to identify
time-frequency signatures of different experimental setups. In
Fig. 3(a) and (b), a set of spectrograms of signal S; is pro-
vided for the baseline shaft and the MA/UB shaft, selected
for its significant increase in transient time-frequency content
over the A/B case. The top portions of the figures are the
time series, and the time-frequency distribution is provided
in the same time axis. The classical power spectral density
results are summarized in Table III with dominant frequencies
common to both sensors determined by cross-power spectral
density calculations between S; and S, for each experimental
setting. Typical CIs measure changes in the spectra of one or
more sensors based on static power spectrum plots, similar
to this analysis. However, these characteristics and the key
frequency harmonics, as well as transient variations in these
harmonics, of the power spectral density can be visualized and
summarily expressed in the spectrogram plots of Sy and S5.
The vibration signatures in the time-frequency domain exhibit
distinctive characteristics in the oscillatory nature of the system
harmonics.

From analysis of the spectrograms, the existence of the domi-
nant frequencies seen from the power spectral density and cross
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Spectrogram of S for (a) baseline (B/A) and (b) MA/UB (MA/UB 3-5).

TABLE 1II

NOMINAL FREQUENCIES AND HARMONICS IN THE TAIL ROTOR DRIVE COMPONENTS
COMPARED TO DOMINANT FREQUENCIES OF THE BASELINE TESTS

Components Nominal Baseline Misaligned Unbalanced Ul}bal.anced-
: (Hz) A/B (Hz) MA/B (Hz) A/UB (Hz) Misaligned (Hz)
Tail Rotor 1R 23.40 242 25.0 - -
Tail Rotor 2R 46.80 - - - -
Tail Rotor Drive Shaft 1R 80.30 822 82.0 84.5 81.4
Tail Rotor Drive Shaft 3R 243.17 244.3 244.0 248.8 244.0/291.0
Hanger Bearing BPF 4R 1,150.19 - 1,130.0 1,347.0 1349.0
Tail Gearbox Gear Mesh 1,333.20 1,590.0 - 1,582.0 -
Tail Gearbox 2R 2,666.40 2,274.0 - 2,277.0 —
Intermediate Gearbox Gear Mesh 2,969.40 - 3,085.0 - -
Tail Gearbox 3R 4,038.00 - - - 4531.0
Tail Gearbox 4R 5,384.00 5,049.0 - 5,075.00 5107.0

spectrum can be confirmed and can easily be seen as the high-
density stripes on the range of 23 Hz—4 kHz. For example, two
distinct frequency stripes can be seen in the aft hanger bearing
readings. The higher frequency stripe of these frequency stripes
(1.5- to 2-kHz range) is not found on the forward hanger
bearing. This frequency stripe is attributed to frequencies em-
anating from the tail rotor gearbox. The major differences in
the forward hanger bearing reading between the balance and
imbalance cases revolve around the increases in power related
to the 5- and 15-20-kHz bands. Higher frequencies, as shown
in Table III, typically coincide with contributions from the

intermediate and tail rotor gearbox mesh frequencies on Ss.
Metal-to-metal contact of faulted machinery has been known to
cause shock pulse energy and acoustic emissions near and well
above the 20-kHz human auditory range, possibly coinciding
with the frequency bands near 15-20 kHz; however, a sampling
rate of 48 kHz limits the investigation of these frequencies.
Furthermore, the number of signal elements on the time-
frequency plane can be mathematically assessed using the
Rényi information measure. The Rényi information measures
of the time-frequency distribution in S [shown in Fig. 3(a)]
and S, are 6.83 and 6.71 bits, respectively, using the equation
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Fig. 4. Rényi self-information measures of (a) S1 and (b) Sq for baseline. Rényi self-information measures of (c) S and (d) S for misalignment.

defined in (5). One can find more time-frequency signal com-
ponents in Fig. 3(a) at the 15-20-kHz frequency bandwidth,
which results in a slightly higher value of the Rényi information
measure of the spectrogram in Fig. 3(a). In addition, the Rényi
information measures of the misaligned-case time-frequency
distribution of S; [shown in Fig. 3(b)] and S, are 7.83 and
6.93 bits. Comparing the spectrograms in Fig. 3(a) and (b)
illustrates that the spectrograms in Fig. 3(b) exhibit more
time-frequency components than those in Fig. 3(a), and one
can quantitatively confirm a reasonable measure of the time-
frequency information using the Rényi information measure.

These differences and signatures on the time-frequency do-
main cannot be clearly distinguished from the traditional power
spectrum reading, a fact which is made apparent from the
quantitative reading of the Rényi information. Nevertheless,
the results obtained by the spectrogram are not sufficient to
describe mutual interactions between the signal pair of S
and Sy in different experimental setups. In the next section,
we investigate the efficacy of the time-frequency-based mutual
information measure discussed in Section II in order to quanti-
tatively characterize the experimental setups of the baseline and
misaligned shafts.

IV. RESULTS AND DISCUSSION

A. Comparison of Rényi-Derived Self-Information to
Classical Time—Frequency Methods

The first step of the analysis and discussion uses the Rényi
self-information measure defined in (5) to describe the individ-
ual time series. The Rényi self-information measures of .S; and
So for the baseline and misaligned cases are shown in Fig. 4.
Signal 1 S; and signal 2 S5 in both the baseline (A/B) and

misaligned (MA/B) cases are processed by applying the eight-
point moving average filtering followed by Rényi information
calculation to obtain the self-information measure. Thus, for
every time instance of every experiment window of the data,
a Rényi calculation of each autocorrelated signal was gathered.
As shown in Fig. 4, a total of 272 self-information measures
were gathered for each signal of each case. Additional overlap-
ping is used for x—y coordinate mapping used in visualizing
part health. In order to identify the tendency of the measure,
an eight-point moving average filter was applied to each signal
with the filter covering half of the time instances provided in
each experiment window. The results of this self-information
measure are compared side by side in Fig. 4 for each signal.
The referenced time instance (15th of the file frame at the
5th experiment window) is marked on each graph to show
consistency with the analyses in Sections I and III-C, which
use the same 4096 data points for the spectrogram.

Notable difference from the side-by-side comparison in
Fig. 4 is a sizable increase in the self-information measure of
the misaligned case over the baseline case. This could be a char-
acteristic signature of a misaligned case. The self-information
measure shows a general increase at the given samples when
comparing the balanced-aligned (B/A) case with the mis-
aligned case and an increase on the average of the measured
frames. The average self-information value of the baseline .Sy
signal is reported at 6.72 bits, while the average value of the
same signal in the MA/B case was 7.68 bits. Comparing the
second signal set S5, we obtain a value of 6.78 bits compared to
7.31 bits for the same cases. However, from this derived metric,
the interpretation is yet unclear. This self-information measure
can be verified using the spectrogram example discussion in
Fig. 3. From these data, there is little other indication of change
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from the baseline case to another “faulty” status of the shaft.
Moreover, the Rényi self-information of S7 in the balanced
case in Fig. 4(a), as well as both signals in the misaligned
case, oscillates more compared to the Rényi self-information
of Sy of the baseline case (A/B). This could be attributed to
more high-frequency components shown in the time-frequency
spectrogram in Fig. 3(b).

While this self-information proves useful and shows a no-
table basis by which to compare data sets, it lacks potential
for comparison of closely related signals and, in this instance,
shows an increase when compared on average while not for
localized comparison. This only partly supports the desired
qualities of a CI, while further information can be gathered
from the mutual information measure. This mutual information
measure is a complex value and can be further subdivided into
two constituent values: an in-phase mutual time-frequency in-
formation (I, (Rs,s,)) and a quadrature mutual time-frequency
information (I, (Qs,s,)) defined in (13) and (14).

B. In-Phase and Quadrature Components of the
Time—Frequency Mutual Information Measure

The mutual information measures of the baseline and mis-
aligned cases are shown in Fig. 5. An interesting trend can be
seen in the baseline case in Fig. 5(a). Overall, the in-phase mu-
tual time-frequency information (I, (Rs,s,)) stays mostly at a
constant separation from the quadrature mutual time-frequency
information (I, (Qs,s,))- Both I (Rs, s,) and I, (Qs, s, ) of the
baseline case in Fig. 5(a) remain relatively constant throughout
all windows of the experiment. However, toward the end of
the sequence outlined in Fig. 5(a), the in-phase and quadrature
mutual information measure values begin to experience a larger
separation. These characteristics are all important to be noted
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while considering what truly characterizes the baseline physics
of the system.

A glance at the mutual information from the misaligned case
in Fig. 5(b) draws attention to two distinctive signatures. First,
like the baseline case, the cospectral mutual time-frequency
information (I, (Rs,s,)) remains relatively constant through-
out all experiment windows with a large trough around exper-
iment window 10 corresponding to a minimum value of the
quadspectral mutual time-frequency information (I, (Qs,s,))-
Second, the quadrature component has a larger average value
over the length of the experiments than was seen in the quad-
spectral component in the baseline case. Also, the quadspectral
component in the misaligned case fluctuates greatly, showing
greater amounts of local minima and maxima. Although the
quadspectral information in the misaligned case revealed a
significant rise in the number of bits in the mutual information
measure, the cospectral portion showed little increase over
the experiment windows measured. By comparing the results
in Fig. 5 with other results by classical spectral analysis or
traditional spectrogram, one can find the usefulness of the
proposed technique for a quantitative health condition assess-
ment of the experimental setup. Further analysis is underway to
understand the relationship between the time-frequency mutual
information method and other confounding factors such as
speed and torque, isolating the sources of transient changes in
the vibration signatures.

C. Time—Frequency Mutual Information Measure
Visualization and Statistical Analysis

The mutual information measure currently in development
and shown in Fig. 6 provides a graphical interpretation of
part condition by analyzing the amount of mutual data shared
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case.

between two vibration signals received from separate ac-
celerometers. The mutual information measure is composed of
a quadrature component and an in-phase component which, by
observation, seem to indicate differences in the actual physics
of the system. Fig. 6 shows the scatter plot distribution of
the in-phase component of the measure on the z-axis and the
quadrature component of the measure on the y-axis. In the con-
dition of system imbalance, as shown in Fig. 6(a), (c), and (d),
which compares the misaligned and unbalanced experimental
settings to the standard baseline, the in-phase component shows
a potential trend toward a decrease in information bits.
Similarly, misalignment can be observed to decrease the
number of information bits of the measure contained in the
quadrature component, shown in Fig. 6(b) and (d). As a dis-
tribution, these values can be seen to shift along the z—y
plane, indicating a shift in part or system status. Additional
studies should be analyzed and compared to determine if these
trends are truly linear as they appear to be from observation.
It would appear that those in Fig. 6(c) and (d), which were
tested under both misalignment and imbalance conditions, as
well as combination settings, have differing degrees of mis-
alignment and imbalance, yielding different distributions which
follow the established trends along the quadrature and in-phase
components. Included in Table IV is reference for the statistics

related to both spectra of the mutual information measure
proposed. Future studies of this indicator method could focus
on varying states of misalignment and imbalance to determine
a quantifiable relation between the x—y distribution shift and
part health. Differences in this mutual information measure
could be further developed into an increased precision statistical
indicator of part or system health status.

V. CONCLUSION

Drawing from Rényi complexity measures and mutual in-
formation theory, baseline, unbalanced, and misaligned experi-
mental settings are quantitatively distinguished by the proposed
mutual information technique. Statistical analysis of the time-
frequency information measure from Table IV shows variances
in the proposed in-phase and quadrature information measures
of 0.0070 (STD of 0.0837) and 0.0054 (STD of 0.2324),
respectively, for baseline test-bed conditions in opposition to an
increased in-phase information measure variance of 3.33 (STD
of 1.8258) in repeated unbalanced test cases and an increased
quadrature information measure of 1.7497 (STD of 1.3228)
in repeated misaligned cases. With imbalance quantifiable by
variance in the in-phase mutual information and misalignment
quantifiable by variance in the quadrature mutual information,
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TABLE 1V
STATISTICAL SUMMARY OF THE MUTUAL INFORMATION MEASURE
- 1 Aligned- Misaligned- | Misaligned- Misaligned-
Statistical Parameter Baseline Unbalanced | Balanced Unbalanced 3-5 | Unbalanced 4-5
Mean In Phase 1.1202 -0.7424 0.4902 -0.9535 -0.1753
Quad 0.4535 -0.5509 -1.3691 -0.3268 -0.0726
STD o |_{n Phase 0.0837 1.8258 0.2147 1.0136 1.4344
Quad 0.2324 0.7107 1.3228 0.4852 1.2363
[ Correlation p  [[ 02326 | 08732 | 0.0891 | 0.4005 [ 0.3188 |

machine health classification can be accomplished using statis-
tical bounding regions. In summary, the baseline can be charac-
terized with a constant separation on a per-time-instance basis
of the mutual information measure. The misaligned case may
be characterized by its quadrature component. This component
shows the misalignment in a relatively large increased number
of bits from the information measure. However, similarity still
remains in the in-phase component whether the case is aligned
or misaligned. The authors are interested in the fusion of other
types of sensors in order to obtain extended information for
more accurate assessment of the health status. Data could
be gathered from vibration, acoustic, and temperature sensors
and correlated to present a single more robust HI [24], [25].
Furthermore, analysis of these values can yield great insights
into the physics behind systems such as the system under study
which provided the mechanical vibration data, providing either
a simple summary of component health for an operator or a
complex interpretation from a knowledgeable engineer in order
to fully achieve CBM.
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